New developments in the Feature Space Mapping

نویسندگان

  • Rafał Adamczak
  • Norbert Jankowski
چکیده

Feature Space Mapping (FSM) model is based on a network explicitly modeling probability distribution of the input/output data vectors. New theoretical developments of this model and results of applications to several classification problems are presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New developments in the Feature Space Mapping model

Feature Space Mapping (FSM) model is based on a network explicitly modeling probability distribution of the input/output data vectors. New theoretical developments of this model and results of applications to several classification problems are presented.

متن کامل

Fixed points for total asymptotically nonexpansive mappings in a new version of bead ‎space‎

The notion of a bead metric space is defined as a nice generalization of the uniformly convex normed space such as $CAT(0)$ space, where the curvature is bounded from above by zero. In fact, the bead spaces themselves can be considered in particular as natural extensions of convex sets in uniformly convex spaces and normed bead spaces are identical with uniformly convex spaces. In this paper, w...

متن کامل

Supervised Feature Extraction of Face Images for Improvement of Recognition Accuracy

Dimensionality reduction methods transform or select a low dimensional feature space to efficiently represent the original high dimensional feature space of data. Feature reduction techniques are an important step in many pattern recognition problems in different fields especially in analyzing of high dimensional data. Hyperspectral images are acquired by remote sensors and human face images ar...

متن کامل

Iterative Process for an α- Nonexpansive Mapping and a Mapping Satisfying Condition(C) in a Convex Metric Space

We construct one-step iterative process for an α- nonexpansive mapping and a mapping satisfying condition (C) in the framework of a convex metric space. We study △-convergence and strong convergence of the iterative process to the common fixed point of the mappings. Our results are new and are valid in hyperbolic spaces, CAT(0) spaces, Banach spaces and Hilbert spaces, simultaneously.

متن کامل

Online Streaming Feature Selection Using Geometric Series of the Adjacency Matrix of Features

Feature Selection (FS) is an important pre-processing step in machine learning and data mining. All the traditional feature selection methods assume that the entire feature space is available from the beginning. However, online streaming features (OSF) are an integral part of many real-world applications. In OSF, the number of training examples is fixed while the number of features grows with t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997